Chatbot for the Return of Positive Genetic Screening Results for Hereditary Cancer Syndromes: a Prompt Engineering Study.

View Abstract

Background The growing demand for genomic testing and limited access to experts necessitate innovative service models. While chatbots have shown promise in supporting genomic services like pre-test counseling, their use in returning positive genetic results, especially using the more recent large language models (LLMs) remains unexplored. Objective This study reports the prompt engineering process and intrinsic evaluation of the LLM component of a chatbot designed to support returning positive population-wide genomic screening results. Methods We used a three-step prompt engineering process, including Retrieval-Augmented Generation (RAG) and few-shot techniques to develop an open-response chatbot. This was then evaluated using two hypothetical scenarios, with experts rating its performance using a 5-point Likert scale across eight criteria: tone, clarity, program accuracy, domain accuracy, robustness, efficiency, boundaries, and usability. Results The chatbot achieved an overall score of 3.88 out of 5 across all criteria and scenarios. The highest ratings were in Tone (4.25), Usability (4.25), and Boundary management (4.0), followed by Efficiency (3.88), Clarity and Robustness (3.81), and Domain Accuracy (3.63). The lowest-rated criterion was Program Accuracy, which scored 3.25. Discussion The LLM handled open-ended queries and maintained boundaries, while the lower Program Accuracy rating indicates areas for improvement. Future work will focus on refining prompts, expanding evaluations, and exploring optimal hybrid chatbot designs that integrate LLM components with rule-based chatbot components to enhance genomic service delivery.

Investigators
Abbreviation
Res Sq
Publication Date
2024-08-29
Pubmed ID
39257988
Medium
Electronic
Full Title
Chatbot for the Return of Positive Genetic Screening Results for Hereditary Cancer Syndromes: a Prompt Engineering Study.
Authors
Coen E, Fiol GD, Kaphingst KA, Borsato E, Shannon J, Smith HS, Masino A, Allen CG