INTRODUCTION
Protective associations of greenspace with Parkinson's disease (PD) have been observed in some studies. Visual exposure to greenspace seems to be important for some of the proposed pathways underlying these associations. However, most studies use overhead-view measures (e.g., satellite imagery, land-classification data) that do not capture street-view greenspace and cannot distinguish between specific greenspace types. We aimed to evaluate associations of street-view greenspace measures with hospitalizations with a PD diagnosis code (PD-involved hospitalization).
METHODS
We created an open cohort of about 45.6 million Medicare fee-for-service beneficiaries aged 65 + years living in core based statistical areas (i.e. non-rural areas) in the contiguous US (2007-2016). We obtained 350 million Google Street View images across the US and applied deep learning algorithms to identify percentages of specific greenspace features in each image, including trees, grass, and other green features (i.e., plants, flowers, fields). We assessed yearly average street-view greenspace features for each ZIP code. A Cox-equivalent re-parameterized Poisson model adjusted for potential confounders (i.e. age, race/ethnicity, socioeconomic status) was used to evaluate associations with first PD-involved hospitalization.
RESULTS
There were 506,899 first PD-involved hospitalizations over 254,917,192 person-years of follow-up. We found a hazard ratio (95% confidence interval) of 0.96 (0.95, 0.96) per interquartile range (IQR) increase for trees and a HR of 0.97 (0.96, 0.97) per IQR increase for other green features. In contrast, we found a HR of 1.06 (1.04, 1.07) per IQR increase for grass. Associations of trees were generally stronger for low-income (i.e. Medicaid eligible) individuals, Black individuals, and in areas with a lower median household income and a higher population density.
CONCLUSION
Increasing exposure to trees and other green features may reduce PD-involved hospitalizations, while increasing exposure to grass may increase hospitalizations. The protective associations may be stronger for marginalized individuals and individuals living in densely populated areas.