BACKGROUND
Nomograms for prostate and colorectal cancer are included in the Surveillance, Epidemiology, and End Results (SEER) Cancer Survival Calculator, under development by the National Cancer Institute. They are based on the National Cancer Institute's SEER data, coupled with Medicare data, to estimate the probabilities of surviving or dying from cancer or from other causes based on a set of patient and tumor characteristics. The nomograms provide estimates of survival that are specific to the characteristics of the tumor, age, race, gender, and the overall health of a patient. These nomograms have been internally validated using the SEER data. In this paper, we externally validate the nomograms using data from Kaiser Permanente Colorado.
METHODS
The SEER Cancer Survival Calculator was externally validated using time-dependent area under the Receiver Operating Characteristic curve statistics and calibration plots for retrospective cohorts of 1102 prostate cancer and 990 colorectal cancer patients from Kaiser Permanente Colorado.
RESULTS
The time-dependent area under the Receiver Operating Characteristic curve statistics were computed for one, three, five, seven, and 10 year(s) postdiagnosis for prostate and colorectal cancer and ranged from 0.77 to 0.89 for death from cancer and from 0.72 to 0.81 for death from other causes. The calibration plots indicated a very good fit of the model for death from cancer for colorectal cancer and for the higher risk group for prostate cancer. For the lower risk groups for prostate cancer (<10% chance of dying of prostate cancer in 10 years), the model predicted slightly worse prognosis than observed. Except for the lowest risk group for colorectal cancer, the models for death from other causes for both prostate and colorectal cancer predicted slightly worse prognosis than observed.
CONCLUSIONS
The results of the external validation indicated that the colorectal and prostate cancer nomograms are reliable tools for physicians and patients to use to obtain information on prognosis and assist in establishing priorities for both treatment of the cancer and other conditions, particularly when a patient is elderly and/or has significant comorbidities. The slightly better than predicted risk of death from other causes in a health maintenance organization (HMO) setting may be due to an overall healthier population and the integrated management of disease relative to the overall population (as represented by SEER).