PURPOSE OF REVIEW
We review applications of artificial intelligence (AI), including machine learning (ML), in the field of HIV prevention.
RECENT FINDINGS
ML approaches have been used to identify potential candidates for preexposure prophylaxis (PrEP) in healthcare settings in the USA and Denmark and in a population-based research setting in Eastern Africa. Although still in the proof-of-concept stage, other applications include ML with smartphone-collected and social media data to promote real-time HIV risk reduction, virtual reality tools to facilitate HIV serodisclosure, and chatbots for HIV education. ML has also been used for causal inference in HIV prevention studies. ML has strong potential to improve delivery of PrEP, with this approach moving from development to implementation. Development and evaluation of AI and ML strategies for HIV prevention may benefit from an implementation science approach, including qualitative assessments with end users, and should be developed and evaluated with attention to equity.