BACKGROUND
Aircraft noise can affect populations living near airports. Chronic exposure to aircraft noise has been associated with cardiovascular disease, including hypertension. However, previous studies have been limited in their ability to characterize noise exposures over time and to adequately control for confounders.
OBJECTIVES
The aim of this study was to examine the association between aircraft noise and incident hypertension in two cohorts of female nurses, using aircraft noise exposure estimates with high spatial resolution over a 20-year period.
METHODS
We obtained contour maps of modeled aircraft noise levels over time for 90 U.S. airports and linked them with geocoded addresses of participants in the Nurses' Health Study (NHS) and Nurses' Health Study II (NHS II) to assign noise exposure for 1994-2014 and 1995-2013, respectively. We used time-varying Cox proportional hazards models to estimate hypertension risk associated with time-varying noise exposure (dichotomized at 45 and 55 dB(A)), adjusting for fixed and time-varying confounders. Results from both cohorts were pooled via random effects meta-analysis.
RESULTS
and Discussion: In meta-analyses of parsimonious and fully-adjusted models with aircraft noise dichotomized at 45 dB(A), hazard ratios (HR) for hypertension incidence were 1.04 (95% CI: 1.00, 1.07) and 1.03 (95% CI: 0.99, 1.07), respectively. When dichotomized at 55 dB(A), HRs were 1.10 (95% CI: 1.01, 1.19) and 1.07 (95% CI: 0.98, 1.15), respectively. After conducting fully-adjusted sensitivity analyses limited to years in which particulate matter (PM) was obtained, we observed similar findings. In NHS, the PM-unadjusted HR was 1.01 (95% CI: 0.90, 1.14) and PM-adjusted HR was 1.01 (95% CI: 0.89, 1.14); in NHS II, the PM-unadjusted HR was 1.08 (95% CI: 0.96, 1.22) and the PM-adjusted HR was 1.08 (95% CI: 0.95, 1.21). Overall, in these cohorts, we found marginally suggestive evidence of a positive association between aircraft noise exposure and hypertension.